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Wireless Channel
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Occur over very short distances, on the
order of the signal wavelength.
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Triple nature
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Path loss

® Caused by

dissipation of the power radiated by the transmitter

effects of the propagation channel

® Models generally assume that it is the same at a given

transmit-receive distance.

® Variation occurs over large distances (100-1000 m)
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Path Loss (PL)

Transmitted power P,

P = =
L :
Average received power P,
Averaged over any random variations

* Free-Space Path Loss Model:
P 1

L o
P d°
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P falls off inversely proportional to the square of the distance d
between the Tx and Rx antennas.

* Simplified Path Loss Model: N
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(Path loss of the free-space model)

Friis Equation (Free-Space PL)

® One of the most fundamental equations in antenna theory
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® Lose more power at higher frequencies.

0.7 GHz 2.4 GHz 5 GHz 60 GHz
10.7 dB loss 6.4 dB loss 21.6 dB loss
20log,, % 20log,, % 20log,, %

® Some of these losses can be offset by reducing the maximum
operating range.

The remaining loss must be compensated for by increasing the

° antenna gain.




More Path Loss Models

® Analytical models ~

Maxwell’s equations
Ray tracing
® Empirical models: Devel
environment.
Okumura
Hata
COST 231

by EURO-COST (EUROpean COoperative for Scientific and Technical

research)

Piecewise Linear (Multi

® Tradeoft: Simplitied Path Loss Model "o

_/

Prohibitive (complex, impractical)
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Simplified Path Loss Model £-&(%]

P Captures the essence of
10 10g10 —L = (1 0 1Og10 Kdg ) — 10]/ lOglo d signal propagation without
[dB] 't resorting to complicated

: , . path loss models, which are
e K is a unitless constant which depends ON 4y approximations to the

the antenna characteristics and real channel anyway!

the average channel attenuation

2
A
( py= do) for free-space path gain at distance d, assuming

omnidirectional antennas

® d,is a reference distance for the antenna far-field ... feid has scattering

phenomena.)

Typically 1-10 m indoors and 10-100 m outdoors.
* yis the path loss exponent.

[Goldsmith, 2005, Table 2.2] /




Path Loss Exponent vy

® 2 in free-space model

® 4 in two-ray model

[Goldsmith, 2005, eq. 2.17]

e Cellular: 3.5 —4.5

[Myung and Goodman, 2008 , p 17]

Environment vy range
Urban macrocells 3.7-6.5
Urban microcells 2.7-3.5
Office Building (same floor) 1.6-3.5
Office Building (multiple floors) 2-6
Store 1.8-2.2
Factory 1.6-3.3
Home 3

* Larger (@ higher freq.
* Lower (@ higher antenna heights




Indoor Attenuation Factors
® Building penetration loss: 8-20 dB (better it behind windows)

® Attenuation between floors

@ 900 MHz
10-20 dB when the Tx and Rx are separated by a single floor
6-10 dB per floor for the next three subsequent floors

A few dB per floor for more than four floors

Typically worse at higher frequency.

® Attenuation across floors
Partition Type Partition Loss in dB
Cloth Partition 1.4
Double Plasterboard Wall 34
Foil Insulation 3.9
Concrete wall 13
Aluminum Siding 20.4
All Metal 26 [Goldsmith, 2005, Sec. 2.5.5]
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[Goldsmith, 2005, Fig 2.1]
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Shadowing (or Shadow Fading)

* Additional attenuation caused by obstacles (large objects such

as buildings and hills) between the transmitter and receiver.
Think: cloud blocking sunlight

* Attenuate signal power through absorption, retlection, scattering,
and diffraction.

® Variation occurs over distances proportional to the length of the

obstructing object (10-100 m in outdoor environments and less in
indoor environments).
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Contours of Constant Received Power

Path loss and
random shadowing

Path loss and
average shadowing

[Goldsmith, 2005, Fig 2.10]
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Log-normal shadowing

¢ Random variation due to blockage from objects in the signal
path and changes in reflecting surfaces and scattering objects
— random variations of the received power at a siven
P g

distance 4 —13dB with higher values in urban

areas and lower ones in flat
P /
10log,, - ~ N(u,az)

I:)r
\ in dB

® This model has been confirmed empirically to accurately

rural environments.

model the variation in received power in both outdoor and

indoor radio propagation environments.

[Erceg et al, 1999] and [Ghassemzadeh et al, 2003]
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Log-normal shadowing (motivation)

® Location, size, dielectric properties of the blocking objects as well
as the changes in reﬂecting surfaces and scattering objects that
cause the random attenuation are generally unknown

—> statistical models must be used to characterize this attenuation.

® Assume a large number of shadowing objects between the
transmitter and receiver

Each object introduce extra power loss factor of o...

50, Pr - K (&jy Ha_
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t \' Y,
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By CLT, this is
approximately

Gaussian

do\Y
Without the objects, the attenuation factor is K (30) :
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PDF of Lognormal RV

® Consider a random variable

R=1.
I:)r
® Suppose
PP 1010g10 R ~ N(,U,Gz) Here, it should be clear
why the unit of G is in
dB.
® Then, P
1{ (101ogr)-u\’
ST
fe(r) =12z mioT |
0, otherwise.

For typical cellular environment, G is in the range of 5-12 dB.

@ [Proakis and Salehi, 2007, p 843] p




Similar Derivation

Problem 4. In wireless communications systems, fading is sometimes modeled by logneor-
mal random variables. We say that a positive random variable Y is lognormal if InY is a
normal random variable (say, with expected value m and variance o?).

Hint: First, recall that the In is the natural log function (log base ¢). Let X = InY.
Then, because Y is lognormal, we know that X ~ N(m,?). Next, write ¥ as a function of
X.

(a) Check that Y is still a continuous random variable.
(b) Find the pdf of Y.

Solution:
Because X = In(Y), we have ¥ = e, So, here, we consider ¥ = g(.X) where the function
g is defined by g(x) = e”.

(a) First, we count the number of solutions for y = g(x). Note that for each value of
y > 0, there is only one x value that satisfies y = g(x). (That x value is = In(y).)
For y < 0, there is no x that satisfies y = g(x). In both cases, the number of solutions
for y = g(x) is countable. Therefore, because X is a continuous random variable, we
conclude that Y is also a continnous random variable.

(b) Start with ¥ = e¥. We know that exponential function gives strictly positive number.
So, Y is always strictly positive. In particular, Fy-(y) = 0 for y < 0.

Next, for y = 0. by definition, #y(y) = P[Y < y]. Plugging in ¥ = ¥, we have
Fy(y)=Ple* <yl.

Because the exponential function is strictly increasing, the event [e¥ < y] is the same
as the event [X < Iny|. Therefore,

Fy(y) = P[X <lny] = Fx (Iny).

in ECS315 HW14

ECS 315 HW Solution 14 — Due: Not Due 2016/1
Combining the two cases above, we have
[ Fx(lny), y=>0,
Finally, we apply
d
frly) = d_FY(y)<
Y
For y < 0, we have fy(y) = j—y() = 0. For y > 0,
F(0) = S Fr () = Py (iny) = f (ny) x Iy = fy(ny).  (142)
(y) = —Fy (y) = —Fx (Iny) = fx (In1 —Iny = — niy). 4.
viy dy‘r ¥ dy X Y X Y dy Z yX i

Therefore,

_ [ yfx(ny), y>0,
frw)= { 0, y < 0.

At y = 0, because Y is a continuous random variable, we can assign any value, e.g. 0,
to fy(0). Then

B 0, otherwise.

Here, X ~ N (m,a?). Therefore,

and

y =0,
otherwise.

1 ,1{[:1[_‘,3_,.,)2
f'l’(y) = { [)ZHrrye ? .




PDF of Lognormal RV (Proof)

Suppose clog, Y ~ N(/J,O'Z).
Let X =clog,Y. Notethat X =clog, :ﬁln(Y):kln(Y).
n

X
Then, Y =e* where K=—".
Inb

Recall, from ECS315 that to find the pdf of Y = g(X) from the pdf of
X, we first find the cdf of Y and then differentiate to get its pdt:

X

F, (y)=P[Y <y]= P{ek < y}: P| X <kIn(y)|=Fy (kIn(y)).

l(kln 7 ?
o

Fx(kln(Y))=§fx(kln( )) \/70-)/ o 2

fY(y):d_y

(-,




PDF of Lognormal RV (Proof)

Suppose clog, Y ~ N(/J,O'Z).

Let X =clog,Y. Notethat X =clog, :ﬁln(Y):kln(Y).
n

X
Then, Y =e* where K=—".
Inb

Alternatively, to find the pdf of Y = g(X) from the pdf of X, when g is

monotone, we may use the formula:
fx (X)}

k
This gives f (y) = ; f, (Clogb y) (same as what we found earlier).

(- p

dx
dy

f (X)|dx|= 1, (y)|dy]| {fv (V)=




Ray tracing (a prelude)

* Approximate the solution of Maxwell’s equations

Approximate the propagation of electromagnetic waves by
representing the wavefronts as simple particles.

Thus, the reflection, diffraction, and scattering effects on the
wavefront are approximated using Simple geometric equations
instead of Maxwell’s more compleX wave equations.

* Assumption: the received waveform can be approximated by the
sum of the free space wave from the transmitter plus the reflected
free space waves from each of the reﬂecting obstacles.

X(t)=4/2P cos(2x ft)

Tx




Review: Energy and Power
* Consider a signal g(t).

* Total (normalized) energy: Parseval’s Theorem

{E = j\g(t)\ dt} hmj ()| oltl j\G(f)\ df .

S
W (F)=[G(F)f]

ESD: Energy Spectral Density

* Average (normalized) power:

T/2
{Pg:< >J %13010? J- ‘g dt—hm— ‘g(t)‘zdt.

-T/2




Review: Power Calculation

P, = (9(OI)

1
Periodic with period Ty ™ j g (t)] 2dt
0 T
z a (t) Z Py,
k k

where the ay(t) are orthogonal
(e.g., do not overlap in the

frequency domain)

(-,




Review: Power Calculation

Py = {19 (1)
C ejznfkt |Ck|2
Y >

k
where the f, are distinct

1
z a(t)cos(2mfit + dy) Ez Fay
K

k
where the A, (f + f.)’s do not

overlap

(-




Power Calculation: Additional Formula

P, = (19(DI)

1 : :
a;cos2rf.t + ¢;) =2 la,ei®1 + q,el®2|?

+ a,cos(2mf,.t + ¢p,) 7 1




Ray tracing (a revisit)
e LOS:

o d
X(t)=4/2P cos(2x ft) y(t)za 2R CO{Z”fC(t_En

From Friis equation,

Tx ‘ > a = v GTxGRx/‘l
ATT '
d

o Multipath Reception

d

y(t)= j—ﬁcos(bz f, (t - ?D




Ex. One reflecting wall (1/4)

® There is a fixed antenna transmitting the sinusoid x(t), a

fixed receive antenna, and a single pertfectly reflecting large

fixed wall.

* Assume that the wall is very large, the retlected wave at a
given point is the same (except for a sign change) as the free
space wave that would exist on the opposite side of the wall if

the wall were not present

|
I
1°SE
Tx <
d —




Ex. One reflecting wall (2/4)
X(t) = 2P, cos(27 f t)

y(t)=Z 2P cos| 278 [t- L |- —F 2P cos| 221, o :
g Vo S Ll i C

_____________

:% 2Ptc0s(27rf (t—gn—zw_ \2P cos(27zf (t—zw d

=2 2P, cos 27zfc(t—9j T 2P, cos 27Z'fc( W dj _____ |
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y(t) :% 2P, cos(27z f (t ——

Ap=2rT,

d

94
2w —d

C

Ex. One reflecting wall (3/4)

2
j + 2
d(2w—d

+7z:27zL(W—d)+7T
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form constructive
and destructive
interference

pattern
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Ex. One reflecting wall (4/4)

- 30
—39.554

101og(P(d)) ~*

10-log(Pu(d)) 50
10-log(PI(d))
- - 60

- 67.604
- 70

f =900 MHz
w=1km




